A comparative study of cosmological constraints from weak lensing using Convolutional Neural Networks

Author:

Sharma Divij,Dai Biwei,Seljak Uroš

Abstract

Abstract Weak Lensing (WL) surveys are reaching unprecedented depths, enabling the investigation of very small angular scales. At these scales, nonlinear gravitational effects lead to higher-order correlations making the matter distribution highly non-Gaussian. Extracting this information using traditional statistics has proven difficult, and Machine Learning based summary statistics have emerged as a powerful alternative. We explore the capabilities of a discriminative, Convolutional Neural Networks (CNN) based approach, focusing on parameter constraints in the (Ω m , σ8) cosmological parameter space. Leveraging novel training loss functions and network representations on WL mock datasets without baryons, we show that our models achieve ~ 5 times higher figure of merit in the σ8-Ω m plane than the power spectrum, ~ 3 times higher than peak counts, and ~ 2 times higher than previous CNN-learned summary statistics and scattering transforms, for noise levels relevant to Rubin or Euclid. For WL convergence maps with baryonic physics, our models achieve ~ 2.3 times stronger constraining power than the power spectrum at these noise levels, also outperforming previous summary statistics. To further explore the possibilities of CNNs for this task, we also discuss transfer learning where we adapt pre-trained models, trained on different tasks or datasets, for cosmological inference, finding that these do not improve the performance.

Publisher

IOP Publishing

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3