Axion-photon conversion in 3D media and astrophysical plasmas

Author:

McDonald J.I.,Garbrecht B.,Millington P.

Abstract

Abstract With axions now a primary candidate for dark matter, understanding their indirect astrophysical signatures is of paramount importance. Key to this is the production of photons from axions in magnetised astrophysical plasmas. While simple formulae for axion-photon mixing in 1D have been sketched several decades ago, there has recently been renewed interest in robust calculations for this process in arbitrary 3D plasmas. These calculations are vital for understanding, amongst other things, the radio production from axion dark matter conversion in neutron stars, which may lead to indirect axion dark matter detection with current telescopes or future searches, e.g., by the SKA. In this paper, we derive the relevant transport equations in magnetised plasmas. These equations describe both the production and propagation of photons in an arbitrary 3D medium due to the resonant conversion of axions into photons. They also fully incorporate the refraction of photons, and we find no evidence for a conjectured phenomenon of dephasing. Our result is free of divergences which plagued previous calculations, and our kinetic theory description provides a direct link between ray tracing and the production mechanism. These results mark an important step toward solving one of the major open questions concerning indirect searches of axions in recent years, namely how to compute the photon production rate from axions in arbitrary 3D plasmas.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference103 articles.

1. Dark Matter In Extreme Astrophysical Environments;Baryakhtar,2022

2. Constraints Imposed by CP Conservation in the Presence of Instantons;Peccei;Phys. Rev. D,1977

3. Weak Interaction Singlet and Strong CP Invariance;Kim;Phys. Rev. Lett.,1979

4. Can Confinement Ensure Natural CP Invariance of Strong Interactions?;Shifman;Nucl. Phys. B,1980

5. A Simple Solution to the Strong CP Problem with a Harmless Axion;Dine;Phys. Lett. B,1981

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3