Revisiting coupled CDM-massive neutrino perturbations in diverse cosmological backgrounds

Author:

Pal Sourav,Samanta Rickmoy,Pal Supratik

Abstract

Abstract Massive neutrinos are well-known to cause a characteristic suppression in the growth of structures at scales below the neutrino free-streaming length. A detailed understanding of this suppression is essential in the era of precision cosmology we are entering into, enabling us to better constrain the total neutrino mass and possibly probe (beyond)-ΛCDM cosmological model(s). Instead of the usual N-body simulation or Boltzmann solver, in this article we consider a two-fluid framework at the linear scales, where the neutrino fluid perturbations are coupled to the CDM (+ baryon) fluid via gravity at redshifts of interest. Treating the neutrino mass fraction f ν as a perturbative parameter, we find solutions to the system with redshift-dependent neutrino free-streaming length in ΛCDM background via two separate approaches. The perturbative scale-dependent solution is shown to be in excellent agreement with numerical solution of the two-fluid equations valid to all orders in f ν, and also agrees with results from CLASS to a good accuracy. We further generalize the framework to incorporate different evolving dark energy backgrounds and found sub-percent level differences in the suppression, all of which lie within the observational uncertainty of BOSS-like surveys. We also present a brief discussion on the prospects of the current analysis in the context of upcoming missions.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3