Starting inflation from inhomogeneous initial conditions with momentum

Author:

Corman Maxence,East William E.

Abstract

Abstract We investigate the circumstances under which cosmic inflation can arise from very inhomogeneous initial conditions using numerical relativity simulations. Previous studies have not considered cases with non-zero momentum density due to technical challenges with solving the coupled Einstein constraint equations. Here we address these, introducing and comparing several different ways of constructing cosmological initial conditions with inhomogeneous scalar field and time derivative profiles. We evolve such initial conditions with large inhomogeneities in both single- and two-field inflationary models. We study cases where the initial gradient and kinetic energy are much larger than the inflationary energy scale, and black holes can form, as well as cases where the initial scalar potential energy is comparable, as in scenarios where inflation occurs at nearly Planckian densities, finding large-field inflation to be generally robust. We consider examples of initial conditions where a large scalar field velocity towards non-inflationary values would prevent inflation from occurring in the homogeneous case, finding that the addition of large gradients in the scalar field can actually dilute this effect, with the increased expansion and non-vanishing restoring force leading to inflation.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smoothing and flattening the universe through slow contraction versus inflation;Journal of Cosmology and Astroparticle Physics;2024-07-01

2. Generic initial data for binary boson stars;Physical Review D;2023-12-04

3. On the initial singularity and extendibility of flat quasi-de Sitter spacetimes;Journal of High Energy Physics;2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3