Spin-1 thermal targets for dark matter searches at beam dump and fixed target experiments

Author:

Catena Riccardo,Gray Taylor R.

Abstract

Abstract The current framework for dark matter (DM) searches at beam dump and fixed target experiments primarily relies on four benchmark models, the so-called complex scalar, inelastic scalar, pseudo-Dirac and finally, Majorana DM models. While this approach has so far been successful in the interpretation of the available data, it a priori excludes the possibility that DM is made of spin-1 particles — a restriction which is neither theoretically nor experimentally justified. In this work we extend the current landscape of sub-GeV DM models to a set of models for spin-1 DM, including a family of simplified models (involving one DM candidate and one mediator — the dark photon) and an ultraviolet complete model based on a non-abelian gauge group where DM is a spin-1 Strongly Interacting Massive Particle (SIMP). For each of these models, we calculate the DM relic density, the expected number of signal events at beam dump experiments such as LSND and MiniBooNE, the rate of energy injection in the early universe thermal bath and in the Intergalactic Medium (IGM), as well as the helicity amplitudes for forward processes subject to the unitary bound. We then compare these predictions with experimental results from Planck, CMB surveys, IGM temperature observations, LSND, MiniBooNE, NA64, and BaBar and with available projections from LDMX and Belle II. Through this comparison, we identify the regions in the parameter space of the models considered in this work where DM is simultaneously thermally produced, compatible with present observations, and within reach at Belle II and, in particular, at LDMX. We find that the simplified models considered here are strongly constrained by current beam dump experiments and the unitarity bound, and will thus be conclusively probed (i.e. discovered or ruled out) in the first stages of LDMX data taking. We also find that the vector SIMP model explored in this work predicts the observed DM relic abundance, is compatible with current observations and within reach at LDMX in a wide region of the parameter space of the theory.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference44 articles.

1. Report of the Topical Group on Particle Dark Matter for Snowmass 2021;Cooley,2022

2. US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report;Battaglieri,2017

3. Snowmass white paper: Light dark matter direct detection at the interface with condensed matter physics;Mitridate;Phys. Dark Univ.,2023

4. Direct Detection of Sub-GeV Dark Matter;Essig;Phys. Rev. D,2012

5. Planck 2018 results. VI. Cosmological parameters;Planck Collaboration;Astron. Astrophys.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3