The impact of anisotropic redshift distributions on angular clustering

Author:

Baleato Lizancos AntónORCID,White MartinORCID

Abstract

Abstract A leading way to constrain physical theories from cosmological observations is to test their predictions for the angular clustering statistics of matter tracers, a technique that is set to become ever more central with the next generation of large imaging surveys. Interpretation of this clustering requires knowledge of the projection kernel, or the redshift distribution of the sources, and the typical assumption is an isotropic redshift distribution for the objects. However, variations in the kernel are expected across the survey footprint due to photometric variations and residual observational systematic effects. We develop the formalism for anisotropic projection and present several limiting cases that elucidate the key aspects. We quantify the impact of anisotropies in the redshift distribution on a general class of angular two-point statistics. In particular, we identify a mode-coupling effect that can add power to auto-correlations, including galaxy clustering and cosmic shear, and remove it from certain cross-correlations. If the projection anisotropy is primarily at large scales, the mode-coupling depends upon its variance as a function of redshift; furthermore, it is often of similar shape to the signal. In contrast, the cross-correlation of a field whose selection function is anisotropic with another one featuring no such variations — such as CMB lensing — is immune to these effects. We discuss explicitly several special cases of the general formalism including galaxy clustering, galaxy-galaxy lensing, cosmic shear and cross-correlations with CMB lensing, and publicly release a code to compute the biases.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference49 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The clustering of Lyman Alpha Emitting galaxies at =2–3;Journal of Cosmology and Astroparticle Physics;2024-08-01

2. Joint inference of multiplicative and additive systematics in galaxy density fluctuations and clustering measurements;Monthly Notices of the Royal Astronomical Society;2024-06-11

3. The Atacama Cosmology Telescope: Cosmology from Cross-correlations of unWISE Galaxies and ACT DR6 CMB Lensing;The Astrophysical Journal;2024-05-01

4. Harmonic analysis of discrete tracers of large-scale structure;Journal of Cosmology and Astroparticle Physics;2024-05-01

5. 12 × 2 pt combined probes: pipeline, neutrino mass, and data compression;Journal of Cosmology and Astroparticle Physics;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3