Hybrid multi-fluid-particle simulations of the cosmic neutrino background

Author:

Chen Joe Zhiyu,Mosbech Markus R.,Upadhye Amol,Wong Yvonne Y.Y.

Abstract

Abstract Simulation of the cosmic clustering of massive neutrinos is a daunting task, due both to their large velocity dispersion and to their weak clustering power becoming swamped by Poisson shot noise. We present a new approach, the multi-fluid hybrid-neutrino simulation, which partitions the neutrino population into multiple flows, each of which is characterised by its initial momentum and treated as a separate fluid. These fluid flows respond initially linearly to nonlinear perturbations in the cold matter, but slowest flows are later converted to a particle realisation should their clustering power exceed some threshold. After outlining the multi-fluid description of neutrinos, we study the conversion of the individual flows into particles, in order to quantify transient errors, as well as to determine a set of criteria for particle conversion. Assembling our results into a total neutrino power spectrum, we demonstrate that our multi-fluid hybrid-neutrino simulation is convergent to < 3% if conversion happens at z = 19 and agrees with more expensive simulations in the literature for neutrino fractions as high as Ω νh 2 = 0.005. Moreover, our hybrid-neutrino approach retains fine-grained information about the neutrinos' momentum distribution. However, the momentum resolution is currently limited by free-streaming transients excited by missing information in the neutrino particle initialisation procedure, which restricts the particle conversion to z ≳ 19 if percent-level resolution is desired.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cosmic-Eν: An- emulator for the non-linear neutrino power spectrum;Monthly Notices of the Royal Astronomical Society;2024-03-18

2. Improving initialization and evolution accuracy of cosmological neutrino simulations;Journal of Cosmology and Astroparticle Physics;2023-06-01

3. Flows for the masses: A multi-fluid non-linear perturbation theory for massive neutrinos;Journal of Cosmology and Astroparticle Physics;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3