Cross-correlation power spectra and cosmic birefringence of the CMB via photon-neutrino interaction

Author:

Mohammadi Roohollah,Khodagholizadeh Jafar,Sadegh Mahdi,Vahedi Ali,Xue S.S.

Abstract

Abstract In the context of the standard model of particles, the weak interaction of cosmic microwave background (CMB) and cosmic neutrino background (CνB), can generate non-vanishing TB and EB power spectra in the order of one loop forward scattering, in the presence of scalar perturbation, which is in contrast with the standard scenario cosmology. Comparing our results with the current experimental data may provide, significant information about the nature of CνB, including CMB-CνB forward scattering for TB, TE, and EB power spectra. To this end, different cases were studied, including Majorana CνB and Dirac CνB. On the other hand, it was shown that the mean opacity due to cosmic neutrino background could behave as an anisotropic birefringent medium and change the linear polarization rotation angle. Considering the contributions from neutrino and anti-neutrino forward scattering with CMB photons (in the case of Dirac neutrino), we introduce relative neutrino and anti-neutrino density asymmetry (δν = Δnν /nν = nν -nν̅ /nν ). Then, using the cosmic birefringence angle reported by the Planck data release β = 0.30° ± 0.11° (68%C.L.), some constraints can be put on δν . Also, the value of cosmic birefringence due to Majorana CνB medium is estimated at about β| ν ≃ 0.2 rad. In this respect, since Majorana neutrino and anti-neutrino are exactly the same, both CB contributions will be added together. However, this value is at least two orders larger than the cosmic birefringence angle reported by the Planck data release, β = 0.30° ± 0.11° (68%C.L.). Finally, we shortly discussed this big inconsistency. It is noteworthy that to calculate the contribution of photon-neutrino forward scattering for cosmic birefringence, we just consider the standard model of particles and the standard scenario of cosmology.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference69 articles.

1. PHYSICAL PROCESSES INVOLVING MAJORANA NEUTRINOS;Li;Phys. Rev. D,1982

2. Can one measure the Cosmic Neutrino Background?;Faessler;Int. J. Mod. Phys. E,2017

3. Beta Decaying Nuclei as a Probe of Cosmic Neutrino Background;Faessler,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3