Fluctuating dark energy and the luminosity distance

Author:

Vedder Casper J.G.,Belgacem Enis,Chisari Nora Elisa,Prokopec Tomislav

Abstract

Abstract The origin of dark energy driving the accelerated expansion of the universe is still mysterious. We explore the possibility that dark energy fluctuates, resulting in spatial correlations. Due to these fluctuations, the Hubble rate itself becomes a fluctuating quantity. We discuss the effect this has on measurements of type Ia supernovae, which are used to constrain the luminosity distance. We show that the luminosity distance is affected by spatial correlations in several ways. First, the luminosity distance becomes dressed by the fluctuations, thereby differing from standard ΛCDM. Second, angular correlations become visible in the two-point correlation function of the luminosity distance. To investigate the latter we construct the angular power spectrum of luminosity distance fluctuations. We then perform a forecast for two supernova surveys, the ongoing Dark Energy Survey (DES) and the upcoming Legacy Survey of Space and Time (LSST), and compare this effect with relativistic lensing effects from perturbed ΛCDM. We find that the signal can rise above the lensing effects and that LSST could test this effect for a large part of the parameter space. As an example, a specific realisation of such a scenario is that quantum fluctuations of some field in the early universe imprint spatial correlations with a predictable form in the dark energy density today. In this case, the Hubble rate fluctuates due to the intrinsic quantum nature of the dark energy density field. We study whether the signal of this specific model would be measurable, and conclude that testing this model with LSST would be challenging. However, taking into account a speed of sound cs < 1 of the dark energy fluid can make this model observable.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large-scale geometry of the Universe;Journal of Cosmology and Astroparticle Physics;2024-01-01

2. Remembrance of things past;Journal of High Energy Physics;2023-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3