Author:
Jimenez Raul,Khalifeh Ali Rida,Litim Daniel F.,Matarrese Sabino,Wandelt Benjamin D.
Abstract
Abstract
Evidence for almost spatial flatness of the Universe has been provided from several observational probes, including the Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO) from galaxy clustering data. However, other than inflation, and in this case only in the limit of infinite time, there is no strong a priori motivation for a spatially flat Universe. Using the renormalization group (RG) technique in curved spacetime, we present in this work a theoretical motivation for spatial flatness. Starting from a general spacetime, the first step of the RG, coarse-graining, gives a Friedmann-Lemaître-Robertson-Walker (FLRW) metric with a set of parameters. Then, we study the rescaling properties of the curvature parameter, and find that zero spatial curvature of the FLRW metric is singled out as the unique scale-free, non-singular background for cosmological perturbations.
Subject
Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献