Parity violating gravitational waves at the end of inflation

Author:

Bastero-Gil Mar,Torres Manso António

Abstract

AbstractInflaton-vector interactions of the typeϕFF̃have provided interesting phenomenology to tackle some of current problems in cosmology, namely the vectors could constitute the dark matter component. It could also lead to possible signatures imprinted in a gravitational wave spectrum. Through this coupling, a rolling inflaton induces an exponential production of the transverse polarizations of the vector field, having a maximum at the end of inflation when the inflaton field velocity is at its maximum. These gauge particles, already parity asymmetric, will source the tensor components of the metric perturbations, leading to the production of parity violating gravitational waves. In this work we examine the vector particle production in the weak coupling regime, integrating the gauge mode amplitudes spectrum during the entirety of its production and amplification epochs, until the onset of radiation domination. Finally, we calculate the gravitational wave spectrum combining the vector mode analytical solution, the WKB expansion, valid only during the amplification until horizon crossing, and the numerical solution obtained at the beginning of radiation domination when the modes cease to grow.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Present and future of C osmo L attice;Reports on Progress in Physics;2024-08-05

2. Parity violation in primordial tensor non-Gaussianities from matter bounce cosmology;Journal of Cosmology and Astroparticle Physics;2024-07-01

3. Directional detection of meV dark photons with Dandelion;Journal of Cosmology and Astroparticle Physics;2024-06-01

4. Probing parity violation in the stochastic gravitational wave background with astrometry;Physical Review D;2024-04-23

5. On the importance of heavy fields in pseudo-scalar inflation;Journal of Cosmology and Astroparticle Physics;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3