Constraints on Yukawa gravity parameters from observations of bright stars

Author:

Jovanović P.,Borka Jovanović V.,Borka D.,Zakharov A.F.

Abstract

Abstract In this paper we investigate a Yukawa gravity modification of the Newtonian gravitational potential in a weak field approximation. For that purpose we derived the corresponding equations of motion and used them to perform two-body simulations of the stellar orbits. In 2020 the GRAVITY Collaboration detected the orbital precession of the S2 star around the supermassive black hole (SMBH) at the Galactic Center (GC) and showed that it is close to the general relativity (GR) prediction. Using this observational fact, we evaluated parameters of the Yukawa gravity (the range of Yukawa interaction Λ and universal constant δ) with the Schwarzschild precession of the S-stars assuming that the observed values as indicated by the GRAVITY Collaboration will have a small deviation from GR prediction [1]. GR provides the most natural way to fit observational data for S-star orbits, however, their precessions can be fitted by Yukawa gravity. Our main goal was to study the possible influence of the strength of Yukawa interaction, i.e. the universal constant δ, on the precessions of S-star orbits. We analyze S-star orbits assuming different strength of Yukawa interaction δ and find that this parameter has strong influence on range of Yukawa interaction Λ. For that purpose we use parameterized post-Newtonian (PPN) equations of motion in order to calculate the simulated orbits of S-stars in GR and Yukawa gravity. Using MCMC simulations we obtain the best-fit values and uncertainties of Yukawa gravity parameters for S-stars. Also, we introduce a new criterion which can be used for classification of gravitational systems in this type of gravity, according to their scales. We demonstrated that performed analysis of the observed S-stars orbits around the GC in the frame of the Yukawa gravity represent a tool for constraining the Yukawa gravity parameters and probing the predictions of gravity theories.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3