On the constant roll complex scalar field inflationary models

Author:

Mohammadi Ali,Ahmadi Nahid,Shokri Mehdi

Abstract

Abstract In this paper we wish to point out the possibility of using a complex scalar field in a constant roll inflationary model, as needed for observational viability. We extend the idea of real field inflaton with constant rate of roll to a complex field, showing the feasibility of solving Einstein Klein-Gordon equations constrained by an appropriate form of constant roll definition. As compared to the well known (two-parametric class of) real field models, there is one more degree of flexibility in constant roll inflationary solutions which is represented by an arbitrary function of time, γ(t). We work with an arbitrary but constant function γ (where γ = 0 refers to the corresponding real field model) and find new inflationary class of potentials. In this class of models, the behavior of real and complex field models are similar in some aspects, for example the solutions with large constant roll parameter are not stable and should be considered as early time transients. These field solutions relax at late time on a dual attractor trajectory. However, complex fields phase space trajectories reach this stable regime after real fields. We performed the stability analysis on γ function space solutions and found that dynamically stable trajectories in phase space are stable under γ variations. We extended this study by considering multifield models of constant roll inflation with non-canonical kinetic terms. By enlarging the size of field space, we showed that a multifield constant roll model is dynamically a single field effective theory. If field space is parametrized by N non-canonical fields, there will be N free parameters in the potential that can be attributed to the interaction between the fields.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3