Author:
Briaud Vadim,Vennin Vincent
Abstract
Abstract
Primordial black holes (PBH) may form from large cosmological perturbations, produced during inflation when the inflaton's velocity is sufficiently slowed down. This usually requires very flat regions in the inflationary potential. In this paper we investigate another possibility, namely that the inflaton climbs up its potential. When it turns back, its velocity crosses zero, which triggers a short phase of “uphill inflation” during which cosmological perturbations grow at a very fast rate. This naturally occurs in double-well potentials if the width of the well is close to the Planck scale. We include the effect of quantum diffusion in this scenario, which plays a crucial role, by means of the stochastic-δN formalism. We find that ultra-light black holes are produced with very high abundances, which do not depend on the energy scale at which uphill inflation occurs, and which suffer from substantially less fine tuning than in alternative PBH-production models. They are such that PBHs later drive a phase of PBH domination.
Subject
Astronomy and Astrophysics
Reference78 articles.
1. Gravitationally collapsed objects of very low mass;Hawking;Mon. Not. Roy. Astron. Soc.,1971
2. Black holes in the early Universe;Carr;Mon. Not. Roy. Astron. Soc.,1974
3. The Primordial black hole mass spectrum;Carr;Astrophys. J.,1975
4. Primordial Black Holes;Escrivà,2022
5. Spectrum of relict gravitational radiation and the early state of the universe;Starobinsky;JETP Lett.,1979
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献