Author:
Chadha-Day F.,Garbrecht B.,McDonald J.I.
Abstract
AbstractSuperradiance in black holes is well-understood but a general treatment for superradiance in stars has until now been lacking. This is surprising given the ease with which we can observe isolated neutron stars and the array of signatures which would result from stellar superradiance. In this work, we present the first systematic pipeline for computing superradiance rates in rotating stars. Our method can be used with any Lagrangian describing the interaction between the superradiant field and the constituents of the star. Our scheme falls into two parts: firstly we show how field theory at finite density can be used to express the absorption of long wavelength modes into the star in terms of microphsyical scattering processes. This allows us to derive a damped equation of motion for the bosonic field. We then feed this into an effective theory for long wavelengths (the so-called worldline formalism) to describe the amplification of superradiant modes of arbitrary multipole moment for a rapidly rotating star. Our method places stellar superradiance on a firm theoretical footing and allows the calculation of the superradiance rate arising from any interaction between a bosonic field and stellar matter.
Subject
Astronomy and Astrophysics
Reference74 articles.
1. Dark Matter In Extreme Astrophysical Environments;Baryakhtar,2022
2. Superradiance: New Frontiers in Black Hole Physics;Brito;Lect. Notes Phys.,2015
3. The Many faces of superradiance;Bekenstein;Phys. Rev. D,1998
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献