First measurements of line-integrated electron density in an ITER-like configuration using the JET far infrared polarimeter diagnostic

Author:

Rossi RiccardoORCID,Boboc AlexandruORCID,Orsitto Francesco PaoloORCID,Gelfusa MichelaORCID,Gaudio PasqualeORCID

Abstract

Abstract Polarimetry exploits the optical activity and birefringent properties of thermonuclear plasmas to calculate some important quantities for their control like the line-integrated electron density and magnetic field distribution. The Joint European Torus (JET) far infrared polarimeter shares the same probing laser beams of the interferometer, with eight channels, four vertical and four lateral. While the vertical channels were already optimised to provide accurate measurements of the Faraday rotation angle, Cotton–Mouton (CM) phase shift and ellipticity, the lateral channels had been only optimised for Faraday rotation angle alone. By setting the initial polarisation angle of the lateral channel at zero degrees the CM effect is minimised, the ellipticity is almost zero, and the CM phase shift angle is impossible to measure. During the recent JET experimental campaign (C38 in 2019–2020), the input polarisation for the lateral channels was altered for a class of pulses to analyse the possibility to measure the CM phase shift angle and the ellipticity, and, more important, to assess if it is possible to provide information of line-integrated electron density using the lateral channels of JET polarimetry in an ITER-like configuration. As a note, ITER will have only tangential channels with reflectors buried deep inside the first wall, so this setup was truly an ITER-like configuration. The results clearly show huge improvements, which can be achieved by just changing the input polarisation. Moreover, the analysis of the measurements shows that the polarimetric measurements have a systematic error, which is probably due to the effect of refraction and to the in-vessel mirrors, which was only partially taken into account during the calibration phase before the plasma. Thus, a new calibration method was developed and the results presented on a statistical basis. It has been demonstrated that, varying the input polarisation of the polarimeter and using the new calibration method, it is possible to measure the line-integrated electron density, using the CM phase shift (or the ellipticity) of the lateral channels, with good accuracy with respect to the electron density measured by the interferometer that was considered the reference.

Funder

H2020 Euratom

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3