Scenario optimization for the tokamak ramp-down phase in RAPTOR: Part B. safe termination of DEMO plasmas

Author:

Van Mulders SORCID,Sauter OORCID,Contré C,Fable EORCID,Felici FORCID,Manas P,Mattei MORCID,Palermo FORCID,Siccinio M,Teplukhina A AORCID

Abstract

Abstract An optimized plasma current ramp-down strategy is critical for safe and fast termination of plasma discharges in a tokamak demonstration fusion reactor (DEMO), both in planned and emergency scenarios, avoiding plasma disruptions and excessive heat loads to the first wall. Plasma stability limits and machine-specific technical requirements constrain the stable envelope through which the plasma must be navigated. Large amounts of auxiliary heating are required throughout the ramp-down phase, to avoid a radiative collapse in the presence of intrinsic tungsten and seeded xenon impurities, as quantitatively estimated in this work. As the plasma current is reduced, the current density becomes increasingly peaked, reflected by a growing value of the internal inductance i 3 , resulting in reduced controllability of the vertical position of the plasma. The feasibility of different plasma current ramp-down rates is tested by applying an automated optimization framework embedding the RAPTOR core transport solver. Optimal time traces for plasma current I p ( t ) and plasma elongation κ ( t ) are proposed, to satisfy an Ip -dependent upper limit on the plasma internal inductance, as obtained from vertical stability studies using the CREATE-NL code, as well as a constraint on the time evolution of q 95, to avoid an ideal MHD mode. A negative current density near the plasma edge is observed in our simulations, even for the most conservative Ip ramp-down rate, indicating significant transient dynamics due to a large resistive time.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3