Hot electron retention in laser plasma created under terawatt subnanosecond irradiation of Cu targets

Author:

Pisarczyk TORCID,Kalal M,Gus’kov S Yu,Batani D,Renner O,Santos J,Dudzak R,Zaras-Szydłowska A,Chodukowski T,Rusiniak Z,Dostal J,Krasa JORCID,Krupka M,Kochetkov Iu,Singh S,Cikhardt JORCID,Burian T,Krus M,Pfeifer M,Cristoforetti GORCID,Gizzi L A,Baffigi F,Antonelli L,Demchenko N N,Rosinski M,Terwińska DORCID,Borodziuk S,Kubes PORCID,Ehret M,Juha L,Skala J,Korneev Ph

Abstract

Abstract Laser plasma created by intense light interaction with matter plays an important role in high-energy density fundamental studies and many prospective applications. Terawatt laser-produced plasma related to the low collisional and relativistic domain may form supersonic flows and is prone to the generation of strong spontaneous magnetic fields. The comprehensive experimental study presented in this work provides a reference point for the theoretical description of laser-plasma interaction, focusing on the hot electron generation. It experimentally quantifies the phenomenon of hot electron retention, which serves as a boundary condition for most plasma expansion models. Hot electrons, being responsible for nonlocal thermal and electric conductivities, are important for a large variety of processes in such plasmas. The multiple-frame complex-interferometric data providing information on time resolved spontaneous magnetic fields and electron density distribution, complemented by particle spectra and x-ray measurements, were obtained under irradiation of the planar massive Cu and plastic-coated targets by the iodine laser pulse with an intensity of above 1016 W cm−2. The data shows that the hot electron emission from the interaction region outside the target is strongly suppressed, while the electron flow inside the target, i.e. in the direction of the incident laser beam, is a dominant process and contains almost the whole hot electron population. The obtained quantitative characterization of this phenomenon is of primary importance for plasma applications spanning from ICF to laser-driven discharge magnetic field generators.

Funder

EUROfusion Enabling Research Project

Russian Foundation for Basic Research

LASERLAB IV

Narodowe Centrum Badań i Rozwoju

Grantová Agentura České Republiky

MEPhI Academic Excellence Project

Grand Equipment National de Calcul Intensif

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Reference38 articles.

1. Spontaneous Magnetic Fields in Laser-Produced Plasmas

2. Magnetic Fields Due to Resonance Absorption of Laser Light

3. Detection of spontaneous magnetic fields in a laser plasma in the "Delfin-1" device;Basov;JETP Lett.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3