The role of laser chirp in relativistic electron acceleration using multi-electron gas targets

Author:

Grigoriadis AORCID,Andrianaki G,Tatarakis MORCID,Benis E PORCID,Papadogiannis N AORCID

Abstract

Abstract The role of multi-10 TW chirped laser pulses interacting with N2 gas jet targets, as a test case for multi-electron targets, is experimentally examined. Complementary measurements using He gas jet targets, which are fully ionized well before the laser pulse peak, are also presented for comparison with the measurements for the multi-electron N2 targets. It is found that for both gases positively chirped laser pulses accelerate electrons more efficiently compared to the Fourier transform-limited and negatively chirped pulses. Furthermore, multi-electron targets offer additional electron injection mechanisms for efficient electron acceleration as a function of the chirp, due to the dynamic ionization of inner-shell electrons near the peak of the laser pulse. Finally, we show that the background plasma density value plays a critical role in the efficient acceleration of positively chirped pulses as well as in the tuning of the positive chirp value for maximizing the electron energy. We clearly observe that larger plasma density values require higher positive chirp values for efficient electron acceleration.

Funder

Research and Training Programme

Euratom

Hellenic Foundation for Research and Innovation

Hellenic National Program of Controlled Thermonuclear Fusion

Euratom Research and Training Programme

Enabling Research Project

European Union

European Commission

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3