Experiments and modelling of negative triangularity ASDEX Upgrade plasmas in view of DTT scenarios

Author:

Aucone LORCID,Mantica PORCID,Happel TORCID,Hobirk JORCID,Pütterich TORCID,Vanovac BORCID,Zimmermann C F BORCID,Bernert M,Bolzonella T,Cavedon MORCID,Dunne MORCID,Fischer R,Innocente P,Kappatou AORCID,McDermott R MORCID,Mariani AORCID,Muscente P,Plank UORCID,Sciortino FORCID,Tardini G,WPTE Team the EUROfusion,Upgrade Team the ASDEX

Abstract

Abstract The paper presents experimental and modelling results of a comparison of negative (NT) and positive (PT) triangularity ASDEX Upgrade (AUG) discharges using the plasma shapes presently foreseen in the DTT tokamak, under construction in Italy. This work is part of a broader effort of investigation to understand whether the good properties observed in NT scenarios in DIII-D and TCV may be extrapolated to the DTT device and more generally to DEMO future operations. The experimental results have shown a practical gain of running these AUG plasmas with only ECRH and mixed NBI+ECRH phases in negative triangularity, even if they access the H-mode. Indeed, the NT electron kinetic profiles recover in all cases the PT electron pressures inside mid-radius due to reduced transport in the region ρ tor = 0.7 0.9 , while exhibiting lower individual ELM (Edge Localised Mode) energy losses. The ion pressure and expected fusion performance are comparable in the case of similar densities. Integrated modelling has been performed using the transport solver ASTRA and the quasi-linear turbulent model TGLF, investigating the transport properties of these discharges. The modelling reproduces the experiments qualitatively with reasonable accuracy. Nonetheless, the heat transport in NT cases is partially overestimated. This may be because TGLF uses the Miller equilibrium, which approximates the magnetic flux surfaces as up-down symmetric. In the caseof these asymmetric NT shapes, the simulated outer surfaces lose part of the tilt with respect to the z-axis, reducing the upper δ < 0 effect. A numerical test to discern the impact of the geometry by symmetrically flipping the shape has shown a beneficial effect of the negative triangularity on heat transport.

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3