Magnetohydrodynamics simulation of magnetic flux rope formation in a quadrupolar magnetic field configuration

Author:

Kumar SanjayORCID,Prasad AvijeetORCID,Nayak Sushree SORCID,Agarwal SatyamORCID,Bhattacharyya RORCID

Abstract

Abstract Magnetic flux ropes (MFRs) play an important role in high-energetic events like solar flares and coronal mass ejections in the solar atmosphere. Importantly, solar observations suggest an association of some flaring events with quadrupolar magnetic configurations. However, the formation and subsequent evolution of MFRs in such magnetic configurations still need to be fully understood. In this paper, we present idealized magnetohydrodynamics (MHD) simulations of MFR formation in a quadrupolar magnetic configuration. A suitable initial magnetic field having a quadrupolar configuration is constructed by modifying a three-dimensional linear force-free magnetic field. The initial magnetic field contains neutral lines, which consist of X-type null points. The simulated dynamics initially demonstrate the oppositely directed magnetic field lines located across the polarity inversion lines (PILs) moving towards each other, resulting in magnetic reconnections. Due to these reconnections, four highly twisted MFRs form over the PILs. With time, the foot points of the MFRs move towards the X-type neutral lines and reconnect, generating complex magnetic structures around the neutral lines, thus making the MFR topology more complex in the quadrupolar configuration than those formed in bipolar loop systems. Further evolution reveals the non-uniform rise of the MFRs. Importantly, the simulations indicate that the pre-existing X-type null points in magnetic configurations can be crucial to the evolution of the MFRs and may lead to the observed brightenings during the onset of some flaring events in the quadrupolar configurations.

Funder

H2020 European Research Council

NSF award

the Research Council of Norway through its Centres of Excellence scheme

NASA-LWS

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3