Trapped upper hybrid waves as eigenmodes of non-monotonic background density profiles

Author:

Senstius M GORCID,Nielsen S KORCID,Vann R G LORCID

Abstract

Abstract Non-monotonic plasma density structures such as blobs and magnetic islands give rise to trapped upper hybrid (UH) waves. Trapped UH waves which satisfy Bohr–Sommerfeld quantization can be thought of as eigenmodes of a cavity. Using fully kinetic particle-in-cell simulations, we verify the existence of these UH eigenmodes and demonstrate their significance as only eigenfrequencies become unstable to three-wave interactions. The eigenmodes can be excited through parametric decay instabilities (PDIs) of an X-mode pump wave at approximately twice the UH frequency, as could be the case for a gyrotron beam traversing a blob in a magnetically confined fusion plasma. We derive a closed expression for the wavenumber of UH waves, which is accurate both close to the UH layer and to the electron cyclotron resonance. This allows for fast analysis of eigenmodes in a non-monotonic structure. An expression for the amplification of PDI daughter waves in an inhomogeneous plasma is extended to a decay region where the first several derivatives vanish. From the amplification in a convective PDI, we estimate the growth rate of the absolute PDI involving the trapped waves. We show that the excitation of eigenmodes through PDIs in our simulations are indeed absolute rather than convective due to the trapping of the daughter waves. Additionally, we show that only eigenmodes get excited through the PDIs, and that we are able to predict the growth rates of the daughter waves and how they scale with the pump wave intensity. This is evidence supporting a fundamental assumption of analytical theory describing low threshold strong scattering observed in magnetically confined fusion experiments during second harmonic electron cyclotron resonance heating (ECRH). Such low threshold instabilities can degrade ECRH performance but also offer novel uses for ion heating or as diagnostics.

Funder

FP7 Fusion Energy Research

Villum Fonden

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3