Abstract
Abstract
Over the last decade, a variational principle based on a generalisation of Taylor’s relaxation, referred to as multi-region relaxed magnetohydrodynamics (MRxMHDs) has been developed. The numerical solutions of the MRxMHD equilibria have been constructed using the Stepped Pressure Equilibrium Code (SPEC) (Hudson et al 2012 Phys. Plasmas
19 112502). In principle, SPEC could also be established to describe the MRxMHD stability of an equilibrium. In this work, a theoretical framework is developed to relate the second variation of the energy functional to the so-called Hessian matrix, enabling the prediction of MHD linear instabilities of cylindrical plasmas, and is implemented in SPEC. The negative and positive eigenvalues of the Hessian matrix predict the stability of an equilibrium. Verification studies of SPEC stability results with the M3D-C
1 code and the tearing mode
Δ
′
criterion have been conducted for ideal and resistive MHD instabilities, respectively, in a pressureless cylindrical tokamak, and have shown good agreement. Our stability analysis is a critical step towards understanding the MHD stability of three-dimensional MHDs where nested flux surfaces, magnetic islands and stochastic regions co-exist.
Funder
H2020 Euratom
Australian Research Council
Simons Foundation
Subject
Condensed Matter Physics,Nuclear Energy and Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献