Direct laser acceleration of electrons from a plasma mirror by an intense few-cycle Laguerre–Gaussian laser and its dependence on the carrier-envelope phase

Author:

Pae Ki HongORCID,Kim Chul MinORCID,Pathak Vishwa BandhuORCID,Ryu Chang-MoORCID,Nam Chang HeeORCID

Abstract

Abstract A direct acceleration scheme to generate high-energy, high-charge electron beams with an intense few-cycle Laguerre–Gaussian (LG) laser pulse was investigated using three-dimensional particle-in-cell simulations. In this scheme, an intense LG laser pulse was irradiated onto a solid density plasma slab. When the laser pulse is reflected, electrons on the target front surface are injected into the longitudinal electric field of the laser and accelerated further. We found that the carrier-envelope phase (CEP) of the few-cycle laser pulse plays a key role in the electron injection and acceleration process. Using a three-cycle LG laser pulse with a 0 = 2 and an appropriate CEP, an about 60 pC electron beam could be obtained at a maximum energy of 16 MeV. In comparison, when a laser pulse with mismatched CEP was used, a total of 4 pC electron beam with a maximum energy of 3.5 MeV was obtained. Linear scaling of electron energy to the laser strength was shown up to a 0 = 100 at which a quasi-monoenergetic electron beam of 850 MeV energy with a charge equal to 600 pC could be obtained. These results demonstrate that high-energy electron beams can be stably generated through direct laser acceleration using a CEP-controlled intense few-cycle LG laser pulse.

Funder

IBS

GIST Research Institute

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3