Shafranov shift correction to the Furth–Yoshikawa scaling of tokamak adiabatic compression

Author:

Nicolas TORCID,Lütjens HORCID,Sauter OORCID,Garbet XORCID

Abstract

Abstract In 1970, Furth and Yoshikawa (1970 Phys. Fluids 13 2593–6) introduced the scalings of adiabatic plasma compression. Basically, if the shape of the external plasma boundary and the aspect ratio are preserved during the compression, then the density, kinetic pressure, beta and current scale respectively as n C 3 , p C 5 , B C 2 , β C , I t C , where C is the linear compression ratio, that is, the ratio between initial and final major radii. In this work, we show analytically, by expanding the Grad–Shafranov equation in terms of C, that the deviation to the Furth–Yoshikawa scaling is related to the Shafranov shift that arises when beta increases at large compression ratios. There is an obvious effect of the Shafranov shift because the axis is moved to a region with larger volume element, and an indirect effect, associated to the relation between flux and radius. The latter effect adds to the first, and is of the same order of magnitude. The result is that the pressure increases less than the C 5 scaling, which can have a significant impact on the fusion power achieved at maximum compression. The analytical results are backed up by equilibrium simulations carried out with the CHEASE code. Equilibria are obtained for different values of C, with conservation of the total fluxes, q profile, and entropy of the plasma. The agreement of the theory and simulations is very good when the boundary of the plasma is circular and the aspect ratio small. When the aspect ratio is close to 1, and/or the boundary not circular, the analytical result gives the gist of the reduction of compression. Finally, a pressure anisotropy ( p p ) / p approximately equal to the increase in normalized Shafranov shift is predicted.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3