Abstract
Abstract
We propose a novel flux-surface parameterization suitable for local MHD equilibrium calculations with strongly-shaped flux surfaces. The method is based on a systematic expansion in a small number of intuitive shape parameters, and reduces to the well-known Miller D-shaped parameterization in the limit where some of the coefficients are set to zero. The new parameterization is valid for up-down asymmetric plasmas and provides an improvement to the Miller form. Simultaneously, the method is rapidly convergent and requires only about half the number of shape parameters as a general Fourier representation in the pedestal.
Subject
Condensed Matter Physics,Nuclear Energy and Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献