Numerical calculation for instability criterion of tearing modes influenced by energetic ions

Author:

Ma YuehaoORCID,Zhang Runzhe,Cai HuishanORCID

Abstract

Abstract The instability criterion of tearing modes, including the effects of circulating energetic ions (CEIs), is numerically solved through an iterative method and fast Fourier transform algorithm. The influence of beta (the ratio of pressure to the magnetic pressure) profile of CEIs and magnetic shear on instability criterion of the tearing modes are investigated systematically. CEIs impact the tearing modes through altering the total perturbed parallel current density, and the gradient of their beta profile at the rational surface (the location of tearing mode) plays an important role. The effect of CEIs on tearing modes depends on the deposition position and the toroidal circulating direction of CEIs. Specifically, the on-axis peaked co-CEIs have a stabilizing effect on tearing modes. For off-axis peaked co-CEIs, in order to stabilize the tearing modes, the deposition position of co-CEIs should be located between the magnetic axis and rational surface, and there is an optimal peak width and deposition location where the stabilizing effect is strongest. For counter-CEIs, they would destabilize the tearing modes when the deposition position is located between the magnetic axis and rational surface. However, if the deposition position is located near the outside rational surface, counter-CEIs have a stabilizing effect on tearing modes. Furthermore, there exists a critical deposition position for CEIs. Whether CEIs plays a stable role or an unstable role depends on the deposition position within or outside the critical deposition position. The critical deposition position is related to the orbital width of CEIs. Finally, the magnetic shear can stabilize the tearing modes, but the effect of co-CEIs on tearing modes is weakened as the magnetic shear increases.

Funder

Collaborative Innovation Program of Hefei Science Center CAS

Open Fund of Magnetic Confinement Fusion Laboratory of Anhui Province

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3