Divertor power spreading in the Divertor Tokamak Test facility for a full power scenario with Ar and Ne seeding

Author:

Ivanova-Stanik IORCID,Chmielewski PORCID,Day Ch,Innocente P,Zagórski RORCID

Abstract

Abstract This work describes integrated numerical modelling applied to Divertor Tokamak Test (DTT) scenarios with tungsten wall and divertor in single null configuration using the COREDIV code, which self-consistently solves 1D radial transport equations of plasma and impurities in the core region and 2D multi-fluid transport in the scrape-off layer (SOL). COREDIV code simulations have been performed and compared to the already published solutions from JETTO for DTT full power discharges with Ar seeding. The influence of the particle transport on the fuelling and flux to the plate is analysed. The main conclusion from the performed simulations is that Ne and Ar radiate effectively in the SOL and no difference was found in the fuelling properties between them. The fuelling increases with increase in radial transport in the core region. It has been found that the rise in the diffusion in the core plasma has a small influence on several global plasma parameters, such as plasma radiation, impurity concentration and fluxes to the divertor plate, but has a strong effect on the fuelling. The fuelling and deuterium flux to the plate decrease almost linearly with decreasing plasma density, keeping n e / n e s e p = constant.

Funder

Ministerstwo Edukacji i Nauki

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3