Generation of meter-scale hydrogen plasmas and efficient, pump-depletion-limited wakefield excitation using 10 GeV electron bunches

Author:

Zhang CORCID,Storey D,San Miguel Claveria PORCID,Nie ZORCID,Marsh K A,Hogan M,Mori W B,Adli E,An WORCID,Ariniello RORCID,Cao G J,Clarke C,Corde SORCID,Dalichaouch T,Doss C E,Emma C,Ekerfelt H,Gerstmayr EORCID,Gessner S,Hansel C,Knetsch A,Lee V,Li FORCID,Litos M,O’Shea B,White G,Yocky G,Zakharova V,Joshi C

Abstract

Abstract High repetition rates and efficient energy transfer to the accelerating beam are important for a future linear collider based on the beam-driven plasma wakefield acceleration scheme (PWFA-LC). This paper reports the first results from the Plasma Wakefield Acceleration Collaboration (E300) that are beginning to address both of these issues using the recently commissioned FACET-II facility at SLAC national accelerator laboratory. We have generated meter-scale hydrogen plasmas using time-structured 10 GeV electron bunches from FACET-II, which hold the promise of dramatically increasing the repetition rate of PWFA by rapidly replenishing the gas between each shot compared to the hitherto used lithium plasmas that operate at 1–10 Hz. Furthermore, we have excited wakes in such plasmas that are suitable for high gradient particle acceleration with high drive-bunch to wake energy transfer efficiency- a first step in achieving a high overall energy transfer efficiency. We have done this by using time-structured electron drive bunches that typically have one or more ultra-high current ( > 30 kA) femtosecond spike(s) superimposed on a longer (∼0.4 ps) lower current ( < 10 kA) bunch structure. The first spike effectively field-ionizes the gas and produces a meter-scale (30–160 cm) plasma, whereas the subsequent beam charge creates a wake. The length and amplitude of the wake depends on the longitudinal current profile of the bunch and plasma density. We find that the onset of pump depletion, when some of the drive beam electrons are nearly fully depleted of their energy, occurs for hydrogen pressure 1.5 Torr. We also show that some electrons in the rear of the bunch can gain several GeV energies from the wake. These results are reproduced by particle-in-cell simulations using the QPAD code. At a pressure of ∼2 Torr, simulation results and experimental data show that the beam transfers about 60% of its energy to the wake.

Funder

U.S. Department of Energy

Office of Science

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3