Investigation of the ejected mass during high-intensity laser solid interaction for improved plasma mirror generation

Author:

Indorf G F HORCID,Scott G G,Ennen M A,Forestier-Colleoni P,Haddock D,Hawkes S J,Scaife L,Bourgeois N,Symes D R,Thornton CORCID,Andreev A A,Teubner UORCID,Neely D

Abstract

Abstract The interaction of very intense and ultrashort laser pulses with solid targets is a topic that has attracted a large amount of interest in science and applications. This interest is boosted by the large progress made in the development of high repetition rate, high-power laser systems. With the significant increase in average power, there is concern about how to deal with ablated debris that may lead to contamination and damage during interaction experiments with solid targets. This issue is also highly relevant in experiments that include plasma mirrors. These are often employed to increase the contrast ratio of the intense laser pulse to unwanted laser pre-pulses from the amplifier chain and/or the background of amplified spontaneous emission. For this reason, the present work investigates the mass ejected from the target into vacuum for different conditions, particularly those present when plasma mirrors are introduced. The total amount of ablated mass can be reduced by making use of a temporally controlled plasma expansion that enhances the plasma mirror reflectivity. In this way, high intensity laser interaction experiments can be carried out with efficient and clean plasma mirrors significantly reducing the degradation of the laser optics and plasma diagnostics placed near the interaction.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3