Abstract
Abstract
The artificial neural networks (NNs) are trained, based on the numerical database, to predict the no-wall and ideal-wall βN limits, due to onset of the n = 1 (n is the toroidal mode number) ideal external kink instability, for the HL-2M tokamak. The database is constructed by toroidal computations utilizing both the equilibrium code CHEASE and the stability code MARS-F. The stability results show that (i) the plasma elongation generally enhances both βN limits, for either positive or negative triangularity plasmas; (ii) the effect is more pronounced for positive triangularity plasmas; (iii) the computed no-wall βN limit linearly scales with the plasma internal inductance, with the proportionality coefficient ranging between 1 and 5 for HL-2M; (iv) the no-wall limit substantially decreases with increasing pressure peaking factor. Furthermore, both the Neural Network (NN) model and the Convolutional Neural Networks model (CNN) are trained and tested, resulting in consistent results. The trained NNs predict both the no-wall and ideal-wall limits with as high as 95% accuracy, compared to those directly computed by the stability code. Additional test cases, produced by the Tokamak Simulation Code (TSC), also show reasonable performance of the trained NNs, with the relative error being within 10%. The constructed database provides effective references for the future HL-2M operations. The trained NNs can be used as a real-time monitor for disruption prevention in the HL-2M experiments, or serve as part of the integrated modeling tools for ideal kink stability analysis.
Funder
US DoE Office of Science
Fundamental Research Funds for the Central Universities
National Key R&D Program of China
National Natural Science Foundation of China
Subject
Condensed Matter Physics,Nuclear Energy and Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献