Abstract
Abstract
This article presents a magnetohydrodynamic (MHD) two-dimensional numerical model of diamagnetic bubble equilibria in an axisymmetric open trap. The theoretical model consists of the Grad–Shafranov equilibrium equation and the transport equation obtained within the resistive single-fluid MHDs with isotropic pressure. Found are the numerical solutions corresponding to the diamagnetic confinement mode. In particular, the equilibria of the diamagnetic bubble in the gas-dynamic multimirror trap are calculated. We investigate the effect of magnetic field corrugation on the equilibrium; the corrugation of the vacuum field is shown to lead to a rather moderate corrugation of the bubble boundary if the period of corrugation is sufficiently small. A valuable numerical result is the distribution of the diamagnetic field, which would be useful for optimizing the position of the wall-stabilization plates.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Condensed Matter Physics,Nuclear Energy and Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献