Prediction of high-performance scenario with localized magnetic shear reversal on EAST tokamak

Author:

Zhang X XORCID,Wu M QORCID,Li G Q,Ding S YORCID,Liu X J,Qian J P,Gong X Z,Gao XORCID,Gao S L,Wu X H,Li KORCID

Abstract

Abstract An advanced scenario with high poloidal beta, large-radius internal transport barriers (ITBs) and localized reversed-shear q-profile, has been demonstrated in DIII-D/EAST joint experiments recently on the DIII-D tokamak. This scenario is also one of the future explorations on EAST. In this article, integrated modeling has been utilized to explore the regime with localized reversed-shear q-profile and high performance based on the developed long-pulse scenario on EAST. A scenario with a strong reversed-shear q-profile has been achieved with the combination of 2 MW off-axis ECH, 2.6 MW LHW and 2 MW NBI (H98y2 ∼ 1.35, β P ∼ 2.56, β N ∼ 2.23, f bs 56 % ). In addition, a small amount (∼0.1 MW) of centrally deposited ECH facilitates the generation of the bootstrap current on or near the axis, and hence reduces the level of the q-profile in this region; thus, a scenario with localized magnetic shear reversal and strong large-radius ITBs is obtained (H98y2 ∼ 1.4, β P ∼ 2.66, β N ∼ 2.31, f bs 60 % ). Modeling predictions indicate that off-axis ECH/LHW and high plasma density promote the formation of large-radius ITBs. A further increase in the injected power of centrally deposited ECH (0.15 MW) or NBI (4 MW) leads to an increase in the temperature gradient, especially the electron temperature near the axis, and large-radius ITBs disappear in all channels (T e, T i, n e); also, the confinement quality decreases. The bootstrap current density profiles and LHW-driven current profiles tend to peak near the axis due to the increase in electron temperature profiles, which eventually leads to peaked total current profiles, similar to the EAST long-pulse scenario. Changes in magnetic shear result in the disappearance of large-radius ITBs. Modeling validation will be carried out in the near future on the EAST tokamak.

Funder

Comprehensive Research Facility for Fusion Technology Program of China

The National Nature Science Foundation of China

The National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3