Abstract
Abstract
Particle-in-cell (PIC) codes usually represent large groups of particles as a single macroparticle. These codes are computationally efficient but lose information about the internal structure of the macroparticle. To improve the accuracy of these codes, this work presents a method in which, as well as tracking the macroparticle, the moments of the macroparticle are also tracked. Although the equations needed to track these moments are known, the coordinate transformations for moments where the space and time coordinates are mixed cannot be calculated using the standard method for representing moments. These coordinate transformations are important in astrophysical plasma, where there is no preferred coordinate system. This work uses the language of Schwartz distributions to calculate the coordinate transformations of moments. Both the moment tracking and coordinate transformation equations are tested by modelling the motion of uncharged particles in a circular orbit around a black hole in both Schwarzschild and Kruskal–Szekeres coordinates. Numerical testing shows that the error in tracking moments is small, and scales quadratically. This error can be improved by including higher order moments. By choosing an appropriate method for using these moments to deposit the charge back onto the grid, a full PIC code can be developed.
Funder
Science and Technology Facilities Council
Subject
Condensed Matter Physics,Nuclear Energy and Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献