Moment tracking and their coordinate transformations for macroparticles with an application to plasmas around black holes

Author:

Warwick AlexanderORCID,Gratus JonathanORCID

Abstract

Abstract Particle-in-cell (PIC) codes usually represent large groups of particles as a single macroparticle. These codes are computationally efficient but lose information about the internal structure of the macroparticle. To improve the accuracy of these codes, this work presents a method in which, as well as tracking the macroparticle, the moments of the macroparticle are also tracked. Although the equations needed to track these moments are known, the coordinate transformations for moments where the space and time coordinates are mixed cannot be calculated using the standard method for representing moments. These coordinate transformations are important in astrophysical plasma, where there is no preferred coordinate system. This work uses the language of Schwartz distributions to calculate the coordinate transformations of moments. Both the moment tracking and coordinate transformation equations are tested by modelling the motion of uncharged particles in a circular orbit around a black hole in both Schwarzschild and Kruskal–Szekeres coordinates. Numerical testing shows that the error in tracking moments is small, and scales quadratically. This error can be improved by including higher order moments. By choosing an appropriate method for using these moments to deposit the charge back onto the grid, a full PIC code can be developed.

Funder

Science and Technology Facilities Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3