Improving fast-particle confinement in quasi-axisymmetric stellarator optimization

Author:

Henneberg S AORCID,Drevlak M,Helander PORCID

Abstract

Abstract A method to improve fast-particle confinement during quasi-axisymmetric stellarator optimization has been identified. Quasi-axisymmetric (qa) stellarator designs have improved neoclassical transport due to their special symmetry of the magnetic field strength. Previously, it has been shown that, in general, quasi-symmetry can only be obtained on one single flux surface (Garren and Boozer 1991 Phys. Fluids B 3 2805–21). Even though quasi-symmetry can be a crucial property of stellarator design, there is no established convention for choosing the flux surface on which this should be optimized. To address this question, the flux surface on which quasi-axisymmetry is optimized has been varied in a qa configuration. The optimal location was found to lie between half radius and the plasma edge, since this allows for two beneficial features: it increases the number of flux-surfaces with improved quasi-axisymmetry and it increases the volume enclosed by the flux surface with the best qa quality.

Funder

EUROfusion

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Reference24 articles.

1. Overview of first wendelstein 7–x high performance operation;Klinger;Nucl. Fusion,2019

2. Plasma equilibrium with rational magnetic surfaces;Boozer;Phys. Fluids,1981

3. Quasi-helically symmetric toroidal stellarators;Nührenberg;Phys. Lett. A,1988

4. Quasi-helical symmetry in stellarators;Boozer;Plasma Phys. Control. Fusion,1995

5. Quasi-axisymmetric tokamaks;Nührenberg,1994

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3