Enhanced confinement in diverted negative-triangularity L-mode plasmas in TCV

Author:

Coda SORCID,Merle AORCID,Sauter OORCID,Porte L,Bagnato F,Boedo J,Bolzonella T,Février OORCID,Labit BORCID,Marinoni AORCID,Pau AORCID,Pigatto LORCID,Sheikh UORCID,Tsui CORCID,Vallar MORCID,Vu TORCID

Abstract

Abstract The favorable confinement properties of negative-triangularity (NT) tokamak configurations were discovered in the TCV tokamak in the late 1990s and were documented over the two following decades, through investigations of predominantly electron-heated plasmas in limited topologies. The most recent experimental campaign in TCV has marked a leap forward, characterized by the development of a variety of diverted NT shapes that are robustly stable with basic Ohmic heating. The application of auxiliary heating, directed now at both electrons and ions (using electron-cyclotron resonance heating as well as neutral-beam injection), has enabled the achievement of record performances for L-mode plasmas, with normalized β values reaching 2.8 transiently (as well as 2 in steady state, but reverting to a limited configuration) and with comparable ion and electron temperatures. The systematic confinement enhancement with NT is confirmed in these experiments. The L-mode existence space is broader than at positive triangularity, with only sporadic transitions to H-mode observed up to 1.4 MW heating power regardless of the magnetic-field-gradient direction relative to the X-point. These experiments are planned to be continued with even higher power following a heating-source upgrade.

Funder

European Commission

Swiss National Science Foundation

Euratom

EUROfusion Consortium

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3