Global ‘zero particle flux-driven’ gyrokinetic analysis of the density profile for a TCV plasma

Author:

Mariani AORCID,Brunner SORCID,Merlo GORCID,Sauter OORCID

Abstract

Abstract The tokamak `a configuration variable (TCV) is a small-sized tokamak, where finite size effects (often called ‘rho-star’ or ‘global’ effects) could significantly impact the heat and particle fluxes, leading to discrepancies between gyrokinetic flux-tube results and global ones (McMillan et al 2010 Phys. Rev. Lett. 105 155001). The impact of global effects on the radial profile of the plasma density has been investigated in a previous study for a particular TCV discharge with negligible particle source, satisfying the ‘zero particle flux’ (ZPF) condition. A radially local flux-tube analysis, reconstructing the dependence of the peaking of the density profile on the main physical parameters, invoking the ZPF constraint, was pursued close to mid-radius in (Mariani et al 2018 Phys. Plasmas 25 012313). This analysis was followed by a global one (Mariani et al 2019 Plasma Phys. Control. Fusion 61 064005), where local quasi-linear (QL) and nonlinear (NL) results were compared with global simulations, showing small global effects on the density peaking. However, these gradient-driven (GD) global runs considered Krook-type heat and particle sources to keep temperature and density profiles fixed on average, which differ from the experimental radially localized sources. To remove this possible bias on the results, a different evaluation of the density peaking for the same case is performed here, based on global NL hybrid simulations where the temperature profiles are [still] kept fixed with the Krook-type sources, however the density profile relaxes in a flux-driven way (with zero particle source). The new hybrid simulations show a good agreement with the old GD runs. A global QL model is also developed and applied using the output from linear global runs, to estimate ratios of fluxes, showing a good agreement with the flux-tube results of global NL GD simulations. The effect of collisions on the results is also investigated, in order to evaluate their impact on the radial variation of the density peaking.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Euratom Research and Training Programme

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3