Simulation of ion cyclotron resonance heating by using particle-in-cell method in MPS-LD linear plasma device

Author:

Sun Changjiang,Sang ChaofengORCID,Wang Hongyu,Zhang Yanjie,Wang Yue,Bian Yu,Wu Jintao,Wang Dezhen

Abstract

Abstract The auxiliary heating of electrons and ions in linear plasma devices (LPDs) is necessary to achieve the boundary plasma relevant environment of tokamaks, to investigate the boundary physics and plasma—material interactions. In this work, the simulation of ion cyclotron resonance heating (ICRH) in the LPD multiple plasma simulation linear device (MPS-LD) is carried out by using a 3D particle-in-cell method, and the wave—ion interaction mechanism based on a ‘beach-heating’ technique in the ion heating region is investigated. A left-handed, circularly polarized wave along the magnetic field lines is used to represent the electromagnetic wave in the model, after the analysis of the cold plasma dispersion relation. The mechanism of ion heating by collisionless damping absorption is demonstrated and explained by using the plasma current as the plasma response. The dependencies of the heating efficiency on the plasma density, magnetic field strength and magnetic field configuration are studied. The correlation between plasma density and magnetic field strength, which satisfies the heating efficiency, is found and it is in perfect agreement with the theoretical derivation. Finally, by using the designed parameters of MPS-LD provided by SOLPS-ITER, the prediction of ICRH is performed. The simulation result shows that the ion temperature can be heated higher than 40 eV and it satisfies the requirement for scrape-off layer/divertor simulation experimentally in MPS-LD.

Funder

Key R&D Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3