Geometry effects on energy selective focusing of laser-driven protons with open and closed hemisphere-cone targets

Author:

King M,Higginson A,McGuffey C,Wilson R,Schaumann G,Hodge T,Ohland J BORCID,Gales S,Hill M P,Pitt S F,Spindloe C,Danson C N,Wei M S,Beg F N,Roth M,Neely D,Gray R J,McKenna PORCID

Abstract

Abstract Relativistically intense laser light interacting with solid density targets can accelerate protons to multi-MeV energies via the target normal sheath acceleration process. The use of hollow hemisphere targets with a hollow conical region to focus protons of selected energies, for applications such as isochoric heating of matter and for the fast ignition approach to inertial confinement fusion, is explored for laser intensity 10 20 Wcm−2. Specifically, the effects of having the cone tip open or closed is investigated experimentally and via a programme of scaled particle-in-cell simulations. The open cone configuration is found to result in proton focusing in the energy range of 9 to 24 MeV, and produce an annular profile for higher energy components, up to 55 MeV, while the spatial distribution of lower energy components remains unchanged. By contrast, for the closed cone case, the focusing effect is diminished by the fields present on the inner wall of the cone tip. Simulations reveal that strong electrostatic and magnetic fields present on the inner surfaces of the target induce the focusing effect with the open cone, but also result in proton divergence in the case of the closed cone. Additionally, the simulations demonstrate the possibility to tailor the cone geometry to select the energy range over which the focusing occurs.

Funder

Science and Technology Facilities Council

Engineering and Physical Sciences Research Council

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3