Abstract
Abstract
A 3D two-fluid simulation, using plasma parameters as measured by MMS on September 8th 2015, shows the nonlinear development of the Kelvin-Helmholtz instability at the Earth’s magnetopause. It shows an extremely rich dynamics, including the development of a complex magnetic topology, vortex merging and secondary instabilities. Vortex induced and mid-latitude magnetic reconnection coexist and produce an asymmetric distribution of magnetic reconnection events. Off-equator reconnection exhibits a predominance of events in the southern hemisphere during the early nonlinear phase, as observed by satellites at the dayside magnetopause. The late nonlinear phase shows the development of vortex pairing for all latitudes while secondary Kelvin-Helmholtz instability develops only in the northern hemisphere leading to an enhancement of the occurrence of off-equator reconnection there. Since vortices move tailward while evolving, this suggests that reconnection events in the northern hemisphere should dominate at the nightside magnetopause.
Subject
Condensed Matter Physics,Nuclear Energy and Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献