Enhanced density in a stabilized high-current plasma beam

Author:

Zheng X J,Gou F J,Zhang Y P,Wang H X,Wallace A CORCID,Wang H B,Huang Z H,Ji X Q,Ye Z BORCID,Liang S Y,Zhang J Z,Wu NORCID,Feng Y T,Deng B Q

Abstract

Abstract Externally generated, axial magnetic fields used to confine high-current plasma beams in compact linear devices are usually 0.5 Tesla or less and can be insufficient to suppress plasma instabilities. Such an issue is addressed in this study by closely winding the current-carrying cable around a small chamber attached to the end of a linear device. The magnetic field generated inside the small chamber during the high-current pulse reached 0.8 Tesla at the peak current of 10.83 kA. Formation of a steady plasma beam through a mixture of argon, hydrogen and helium was photographed by a high-speed camera at the instant of the peak current. The beam width profile starts from over 24.8 mm at the upstream location and becomes thinner with distance down-stream. At the location of laser-interferometer measurement, at the right-most viewing window on the test chamber, the beam width was estimated as 7.4 mm and plasma density was evaluated to be 1.0 × 1022 m−3, an increase of two orders of magnitude compared to a previous study. A simple relationship was derived for the plasma density as a function of beam width. Based on examination of the metal target at the far end, the final beam width was estimated as 50 µm, with the plasma density evaluated to be 4.31 × 1022 m−3, with a calculated ion energy of 4.35 keV, consistent with x-ray spectrum measurements.

Funder

Southwestern Institute of Physics Innovation Program

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3