Abstract
Abstract
We propose a method to generate circularly polarized (CP) attosecond pulses by the interactions of a relativistic-intensity right-hand CP laser pulse and magnetized sub-critical plasma. It is theoretically and numerically demonstrated that when an external magnetic field with an appropriate strength is applied to a sub-critical plasma along the laser propagation, the ponderomotive force of a right-hand CP laser at the vacuum-plasma boundary is significantly enhanced. The electrons are then steadily pushed forward until the timely-increasing charge separation field becomes strong enough to pull them back, forming a dense and counter-moving electron sheet. The relativistic-velocity electron sheet works as a flying mirror to compress the tail of the driving laser and efficiently generate a single CP attosecond pulse. The present scheme shows a stable efficiency on different scale lengths of preplasma and thus may provide a robust way to generate bright and CP attosecond pulses.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences President’s International Fellowship Initiative
International Partnership Program of Chinese Academy of Sciences
Strategic Priority Research Program of Chinese Academy of Sciences
Subject
Condensed Matter Physics,Nuclear Energy and Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献