Abstract
Abstract
Singular currents typically appear on rational surfaces in non-axisymmetric ideal magnetohydrodynamic (MHD) equilibria with a continuum of nested flux surfaces and a continuous rotational transition. These currents have two components: a surface current (Dirac δ-function in flux surface labeling) that prevents the formation of magnetic islands, and an algebraically divergent Pfirsch–Schlüter current density when a pressure gradient is present across the rational surface. On flux surfaces adjacent to the rational surface, the traditional treatment gives the Pfirsch–Schlüter current density scaling as
J
∼
1
/
Δ
ι
, where
Δ
ι
is the difference of the rotational transform relative to the rational surface. If the distance s between flux surfaces is proportional to
Δ
ι
, the scaling relation
J
∼
1
/
Δ
ι
∼
1
/
s
will lead to a paradox that the Pfirsch–Schlüter current is not integrable. In this work, we investigate this issue by considering the pressure-gradient-driven singular current in the Hahm–Kulsrud–Taylor problem, which is a prototype for singular currents arising from resonant magnetic perturbations. We show that not only the Pfirsch–Schlüter current density but also the diamagnetic current density are divergent as
∼
1
/
Δ
ι
. However, due to the formation of a Dirac δ-function current sheet at the rational surface, the neighboring flux surfaces are strongly packed with
s
∼
(
Δ
ι
)
2
. Consequently, the singular current density
J
∼
1
/
s
, making the total current finite, thus resolving the paradox. Furthermore, the strong packing of flux surfaces causes a steepening of the pressure gradient near the rational surface, with
∇
p
∼
d
p
/
d
s
∼
1
/
s
. In general non-axisymmetric MHD equilibrium, contrary to Grad’s conjecture that the pressure profile is flat around densely distributed rational surfaces, our result suggests a pressure profile that densely steepens around them.
Funder
Euratom
U.S. Department of Energy
Simons Foundation/SFARI
National Energy Research Scientific Computing Center
Shanghai Pujiang Program
Subject
Condensed Matter Physics,Nuclear Energy and Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献