Oxidation of lithium plasma facing components and its effect on plasma performance in the lithium tokamak experiment-β

Author:

Maan AORCID,Boyle D PORCID,Kaita R,Ostrowski E TORCID,Donovan D C,Majeski R P,Koel B E,Biewer T M,Hughes P EORCID,Hansen CORCID,Kubota S,Soukhanovskii VORCID

Abstract

Abstract The characteristics of lithium-coated plasma-facing components (PFCs) have been correlated with plasma performance on the lithium tokamak experiment-β (LTX-β). Previous experiments on LTX showed that the application of lithium to PFCs was needed to achieve higher performance discharges with flat electron temperature profiles and high edge temperatures. Samples that match the LTX-β PFCs were exposed to plasmas before and after PFCs were coated with lithium and transferred under vacuum to a surface analysis station. Measurements using x-ray photoelectron spectroscopy (XPS) revealed that the primary surface constituent was lithium oxide. Earlier XPS analysis of lithium-coated PFCs on LTX was only able to show the presence of surface oxygen. The new XPS data from LTX-β have sufficient resolution to clearly identify lithium compounds for the first time, and enable them to be correlated with how lithium-coated PFCs can reduce impurities and retain hydrogen to reduce recycling.

Funder

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3