Abstract
Abstract
From pulsed plasma experiments focusing on neutral pressure dependence, the impacts of a transition from a low to a high recycling target on the particle load were investigated and discussed in the linear plasma device, Magnum-PSI. Time traces of the target ion flux were mitigated in high neutral pressure cases because of a plasma-neutral interaction. On the other hand, in low neutral-pressure cases, the target ion flux indicated partial suppression in the last part of the pulse. The Langmuir probe, located 200 mm upstream from the target plate, did not exhibit such a suppression. Pulse suppression can be expected from the localized interaction between recycled neutral flux and pulsed plasma in front of the target. The mean-free paths of recycled neutral particles regarding the charge exchange with pulse ions and elastic scattering with background neutral particles were compared. Modeling using a fluid code coupled with a neutral transport code was performed, and it was concluded that dynamic pressure induced by the transient recycled neutral flux caused sufficient momentum loss to stagnate the pulsed plasma toward the target plate.
Funder
EURATOM
TEC
Netherlands Organization for Scientific Research
NIFS/NINS under the Young Researchers Supporting Program
KAKENHI
Subject
Condensed Matter Physics,Nuclear Energy and Engineering