Fusion performance of spherical and conventional tokamaks: implications for compact pilot plants and reactors

Author:

Costley A EORCID,McNamara S A MORCID

Abstract

Abstract Spherical tokamaks (STs) have features that make them a potentially attractive option for fusion power production compared to conventional tokamaks (CTs) including operation at high beta and high self-driven ‘bootstrap’ current. The thermal energy confinement time (τ Ε) also typically has a stronger dependence on toroidal magnetic field and a weaker dependence on plasma current, but so far it has not been established how this difference impacts performance under reactor conditions. This aspect is explored in this paper. Using empirical data from NSTX and MAST, and from multiple CTs, we investigate analytically and by using established fusion codes the potential fusion performance, characterised by the fusion triple product, nTτ Ε, and fusion power gain, Q fus, where n and T are the density and temperature respectively. We find that for similar values of field and fusion power, but smaller volume, STs can have nTτ Ε up to a factor of three higher and Q fus an order of magnitude higher than CTs. We identify the origin of this enhanced performance and outline a measurement to advance this finding. Potentially our results open an alternative and faster route to fusion power based on relatively small, low power STs.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3