Ion cyclotron resonance heating fast and slow wave excitation and power deposition in edge plasmas with application to ITER

Author:

Messiaen AORCID,Maquet V,Ongena JORCID

Abstract

Abstract The antenna power coupling to the plasma centre and its possible deleterious coupling to the plasma edge are key parameters in an ion cyclotron resonance heating system. The influence on these parameters by the confluence between the slow and the fast magnetosonic waves is studied for the case of large machines. Until now, the modelling of the scrape off layer region has been calculated by ANTITER II, which contains only the fast wave description and where the confluence with the slow wave (S wave) is approximated by the Alfvén resonance. In the present study, a complete modelling of the slow and fast waves is made by ANTITER IV. The modelling by the two codes is compared and shows the important role of the Alfvén and the lower hybrid resonances for the excitation of large fields and associated power deposition at the edge of the plasma even far from the antenna location. The ANTITER IV modelling is thereafter applied to the case of the ITER antenna with a reference density profile and heating parameters. A comparative study is made for the edge power deposition and the excitation of large fields for different toroidal phasing cases of the antenna. This study also takes into account the tilting of the antenna array with respect to the total magnetic field in front of the antenna. If the Faraday screen is field-aligned, the excitation of the S wave occurs at the wave confluence; however, in the case of non-alignment the antenna directly excites the S wave. This effect is studied and quantified. All edge effects, even the direct excitation of S waves, can be strongly reduced by tailoring the current distribution in the straps of the antenna array. Resulting cases for the minimisation of edge power deposition in ITER and the reactor are studied.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3