MST resistive wall tearing mode simulations

Author:

Strauss H RORCID,Chapman B E,Hurst N CORCID

Abstract

Abstract The Madison Symmetric Torus (MST) is a toroidal device that, when operated as a standard tokamak, does not have major disruptions. Unlike most tokamaks, the MST plasma is surrounded by a close fitting highly conducting wall, with a resistive wall penetration time two orders of magnitude longer than in JET or DIII-D, and three times longer than in ITER. The MST can operate with edge q a 2 , unlike standard tokamaks. Simulations presented here indicate that the MST is unstable to resistive wall tearing modes (RWTMs) and resistive wall modes (RWMs). They could in principle cause disruptions, but the predicted thermal quench (TQ) time is much longer than the experimental pulse time. If the MST TQ time were comparable to measurements in JET and DIII-D, theory and simulations predict that disruptions would have been observed in MST. This is consistent with the modeling herein, predicting that disruptions are caused by RWTMs and RWMs. In the low q a 2 regime of MST, the RWTM asymptotically satisfies the RWM dispersion relation. The transition from RWTM to RWM occurs smoothly at q a = m / n , where m , n are poloidal and toroidal mode numbers.

Funder

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Models of resistive wall tearing mode disruptions;Physics of Plasmas;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3