Quasioptical modeling of the electron cyclotron emission diagnostic

Author:

Yanagihara KORCID,Kubo SORCID

Abstract

Abstract We report the first applications of the quasioptical (QO) code PARADE (PAraxial RAy DEscription) for modeling the electron cyclotron emission (ECE) diagnostic. Geometrical optics (GO) has been exploited to predict the ECE intensity received by an antenna, but is not sufficient since GO drops the information lying on the transverse cross section of the antenna sensitivity. Hence, we studied a QO model of ECE measurement based on the PARADE code. By introducing a weighting operator W ˆ , induced by the envelope profile of a wave beam virtually injected from an ECE receiving antenna, an integral equation, formally identical to the conventional GO model, is newly derived from the wave-action conservation law. A QO ECE prediction module −E3 is also newly developed, is applied to the JT-60SA tokamak, and shows that radiation temperature is corrected from conventional GO prediction. The −E3 module and the PARADE code are applicable to any fusion plasma devices. By using this ECE prediction package, more realistic calculations of radiation temperature are expected by taking the actual structure of an ECE receiving antenna and plasma parameters as well.

Publisher

IOP Publishing

Reference47 articles.

1. Electron cyclotron emission and absorption in fusion plasmas;Bornatici;Nucl. Fusion,1983

2. Japan’s efforts to develop the concept of JA DEMO during the past decade;(the Joint Special Design Team for Fusion DEMO;Fusion Sci. Technol.,2019

3. Overview of EU DEMO design and R & D activities;Federici;Fusion Eng. Des.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3