Dynamics of ultrafast heated radiative plasmas driven by petawatt laser light

Author:

Sugimoto KORCID,Iwata NORCID,Sunahara AORCID,Sano T,Sentoku Y

Abstract

Abstract A relativistic petawatt laser light can heat a high Z metal above keV temperatures isochorically and ionize it almost fully. Copious hard x-rays are emitted from a high-Z hot plasma, which acts as an x-ray source, while x-ray emissions serve as an energy sink for the plasma. The isochoric heating of a solid silver foil irradiated by a relativistic laser light is studied with the help of 1D and 2D particle-in-cell simulations including Coulomb collisions, ionizations, and radiation processes. We find that the radiation power from the keV silver plasma is comparable to the incident laser power when the laser intensity is less than 1019 W cm−2. Thus, the plasma formation and particle acceleration are affected by the radiation, e.g. a highly compressed shock formation. Once the laser heating is over, the silver plasma loses its energy on a timescale of picoseconds, during which hard x-rays flash. The radiation spectra of the keV silver plasma are also presented.

Funder

Japan Society for the Promotion of Science

The Foundation for the Promotion of Ion Engineering

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3